FAR BEYOND

MAT122

Definition of the Derivative

Finding Equation of Tangent Line

ex. Find the equation of the tangent line to the parabola $y = x^2$ at the point P_1 : (1,1)

<u>m</u>

 x_2

Average vs Instantaneous Velocity

Suppose a ball is dropped from upper deck of CN Tower, 450m above the ground. Find the velocity of the ball after 5 seconds. Use the model $s(t) = 4.9t^2$

Use a **LIMIT** to make distance infinitely small

Instantaneous Velocity

Rate of Change

The slope of a tangent line at a point on a curve measures the <u>rate of change</u> at that point

Definition uses the difference quotient:

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Rate of Change (cont'd)

ex. Find the slope of the tangent line to $y = 4x - x^2$ at a = 1 using the definition of rate of change.

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Follow up question: Find equation of this tangent line.

Definition of the Derivative - Formula

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

ex: Find the derivative of $f(x) = x^2 - 8x + 9$ at x = a

$$= 2a - 8$$

General Definition of the Derivative

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \implies f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

ex: Find the general derivative of $f(x) = x^3 - x$

General Definition of the Derivative - Do

$$f'(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x}+h) - f(\mathbf{x})}{h}$$

Do: Use the definition of the derivative to find the derivative of:

$$f(x) = 1 - 3x^2$$

General Definition of the Derivative – Example 2

ex: Find the general derivative of $f(x) = \sqrt{x}$. State the domain of f'.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = \sqrt{x+h} \qquad f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

General Definition of the Derivative – Example 3

ex: Find the general slope of the tangent line of $f(x) = \frac{1-x}{2+x}$ Do: f(x+h)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Second Derivative Example

Recall: the derivative of $f(x) = x^3 - x$: $f'(x) = 3x^2 - 1$

To find f''(x), take the derivative of f'(x).

Do: find f''(x) and $f^{(4)}(x)$.

$$\therefore 6x = f''(x)$$

Derivative Exceptions

a function is <u>not</u> **differentiable** where there is a:

- 1. corner
- 2. discontinuity
- 3. vertical tangent